Outline

Week 6: Matrix Multiplication and Linear Transformation

Course Notes: 4.1,4.2

Goals: Learn the mechanics of matrix multiplication and linear transformation, and use matrix multiplication to describe linear transformations.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12
\end{array}\right] \\
& A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12
\end{array}\right]
\end{aligned}
$$

A matrix with 3 rows and 4 columns is a 3 by 4 matrix.
We often write $A=\left[a_{i, j}\right]$, where $a_{i, j}$ refers to the particular entry of A in row i, column j.

Course Notes 4.1: Matrix Operations $0 \bullet 0000000000$	Course Notes 4.2: Linear Transformations 00000000000000000
Addition and Scalar Multiplication	

Addition and scalar multiplication work the way you want them to.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12
\end{array}\right], \quad B=\left[\begin{array}{cccc}
2 & 1 & 5 & -1 \\
8 & 6 & 6 & 2 \\
3 & -1 & 2 & -3
\end{array}\right]
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{ll}\text { Course Notes 4.1: Matrix Operations } & \text { Course Notes 4.2: Linear Transformations } \\ 000000000000 & 00000000000000000\end{array}$
Mobile money minimization:
matrix multiplication motivation

You're comparing cell phone plans. For some number of plans and for some number of people, you have information about costs and usage of three servies: texts, minutes talking, and GB of data.

You want to know, for each person and plan, what the cost will be.

Input: plans \times services and people \times services
Output: plans \times people

Course Notes 4.1: Matrix Operations Ooobocoocoooc
 Matrix Multiplication
 $$
\left[\begin{array}{lll} 1 & 2 & 3 \\ 2 & 4 & 6 \end{array}\right] \cdot\left[\begin{array}{ll} 1 & 0 \\ 2 & 1 \\ 0 & 3 \end{array}\right]=\left[\begin{array}{cc} 5 & 11 \\ 10 & 22 \end{array}\right]
$$

In the product, the entry in the ith row and jth column comes from dotting the ith row and jth column of the matrices being multiplied.
$[1,2,3] \cdot[1,2,0]=5$
$[1,2,3] \cdot[0,1,3]=11$
$[2,4,6] \cdot[1,2,0]=10$
$[2,4,6] \cdot[0,1,3]=22$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

$$
\left[\begin{array}{lll}
0 & 1 & 3 \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
3 & 0 \\
1 & 2
\end{array}\right]=
$$

Another Example

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{llllll}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right]=\left[\begin{array}{llllll}
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right]
$$

We can only take the dot product of two vectors that have the same length.

If A is an m-by- n matrix, and B is an r-by- c matrix, then $A B$ is only defined if $n=r$. If $n=r$, then $A B$ is an m-by- c matrix.

Can you always multiply a matrix by itself?

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Properties of Matrix Multiplication
One important property DOESN'T hold.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
7 & 5 \\
3 & 0
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
7 & 5 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=}
\end{aligned}
$$

Course Notes 4.1: Matrix Operations Ooocoocoooboo

Properties of Matrix Algebra

The other properties hold as you would like. (Page 128, notes.)

1. $A+B=B+A$
. $A+(B+C)=(A+B)+C$
. $s(A+B)=s A+s B$
2. $(s+t) A=s A+t A$
3. $(s t) A=s(t A)$
4. $1 A=A$
5. $A+\mathbf{0}=A$ (where $\mathbf{0}$ is the matrix of all zeros)
6. $A-A=A+(-1) A=\mathbf{0}$
7. $A(B+C)=A B+A C$
8. $(A+B) C=A C+B C$
9. $A(B C)=(A B) C$
10. $s(A B)=(s A) B=A(s B)$

Course Notes 4.1. Mar

Examples

Simplify the following expressions.

1) $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{lll}8 & 9 & 8 \\ 9 & 8 & 9 \\ 8 & 9 & 8\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{lll}-8 & -9 & -8 \\ -9 & -8 & -9 \\ -8 & -9 & -8\end{array}\right]$
2) $\left(\left[\begin{array}{ll}33 & 44 \\ 55 & 66\end{array}\right]\left[\begin{array}{ll}5 & 1 \\ 7 & 0\end{array}\right]\right)\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
3) $2.8\left[\begin{array}{ccc}15 & 0 & 38 \\ 9 & 10 & 11 \\ 8 & 7 & 6\end{array}\right]+5.6\left[\begin{array}{ccc}-2.5 & 0 & 1 \\ 0.5 & 0 & -0.5 \\ 1 & 1.5 & 2\end{array}\right]$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More on Dimensions

Suppose A is an m-by- n matrix, and B is an r-by-c matrix.

If we want to multiply A and B, what has to be true about m, n, r, and c ?

If we want to add A and B,
what has to be true about m, n, r, and c ?

If we want to compute $(A+B) A$, what has to be true about m, n, r, and c ?

Course Notes 4.1: Matrix Operations Course Notes 4.2: Linear Transformations
 Functions and Transformations

domain

Linear Transformations
Course Notes 4.2: Linear Transformations 0.000000000000000

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(2)+f(3)=4+9=13 \\
& 2 f(3)=2 \cdot 9=18 \\
& g(x)=5 x \\
& g(2+3)=25 \quad g(2)+g(3)=10+15=25 \\
& g(2 * 3)=30 \\
& 2 g(3)=2 \cdot 15=30 \\
& g(x+y)=5(x+y)=5 x+5 y=g(x)+g(y) \\
& g(x y)=5(x y)=x(5 y)=x g(y)
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

Notes
\qquad

Course Notes 4.1: Matrix Operations	Course Notes 4.2: Linear Transformations
000000000000	
Linear Transformations	

Definition
A transformation T is called linear if, for any \mathbf{x}, \mathbf{y} in the domain of
T, and any scalar s,

$$
T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})
$$

and

$$
T(s \mathbf{x})=s T(\mathbf{x})
$$

Is differentiation $T(f(x))=\frac{d}{d x}[f(x)]$ (of functions whose
derivatives exist everywhere) a linear transformation?
Let $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+y \\ 2 x\end{array}\right]$. Is T a linear transformation?
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Notes 4.1: Matrix Operations 000000000000	Course Notes 4.2: Linear Transformations 0000 •000000000000
Linear Transformations	

Notes

Definition
A transformation T is called linear if, for any \mathbf{x}, \mathbf{y} in the domain of T, and any scalar s,

$$
T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})
$$

\qquad
and

$$
T(s \mathbf{x})=s T(\mathbf{x})
$$

Is the transformation $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ linear?
If A is a matrix, then the transformation

$$
T(\mathbf{x})=A \mathbf{x}
$$

of a vector \mathbf{x} is linear

Geometric Interpretation
We interpret a matrix geometrically as a function from some vectors to some other vectors.
In particular, the function is a linear transformation, so it preserves addition and scalar multiplication.

If $T(\mathbf{x})=A \mathbf{x}$ for some 3×5 matrix A (and a vector \mathbf{x}), what are the domain and range of the function T ?

Course Notes 4.1: Matrix Operations Course Notes 4.2: Linear Transformations Ou0000000000
 Example

Let $T(x)$ be the rotation of x by ninety degrees.

Rotation by a fixed angle is a linear transformation.

Course Notes 4.1: Matrix Operations
o.0.0.0000000

Computing a rotations of ϕ radians $(\phi$ fixed $)$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
思

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Notes 4.1: Matrix Operations
000000000000
Computing Rotations

Course Notes 4.1: Matrix Operations
000000000000
Computing Rotations

$$
\operatorname{Rot}_{\phi}=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

What matrix should you multiply $\left[\begin{array}{l}4 \\ 2\end{array}\right]$ by to rotate it 90 degrees ($\pi / 2$ radians)?

What matrix should you multiply $\left[\begin{array}{l}4 \\ 2\end{array}\right]$ by to rotate it 30 degrees ($\pi / 6$ radians)?

${ }^{\text {Coursentores }}$.
 Are rotations commutative?

Course Notes 4.2: Linear Transtormations $0000000000 \bullet 00000$

Let a be a vector in \mathbb{R}^{2}
(1) Rotate the vector a by θ radians, then by ϕ radians
(2) Rotate the vector a by ϕ radians, then by θ radians

Will you always end up with the same thing?

Notes
\qquad
\qquad
\qquad
\qquad
\qquad

$$
v=\left[v_{1}, v_{2}\right] ; \quad T(v)=[x, y]
$$

$$
x=\|v\| \cos (\theta+\phi) \quad y=\|v\| \sin (\theta+\phi)
$$

\qquad

$$
=\|v\|(\cos \theta \cos \phi-\sin \phi \sin \theta) \quad=\|v\|(\sin \theta \cos \phi+\cos \theta \sin \phi)
$$

$$
=v_{1} \cos \phi-v_{2} \sin \phi \quad=v_{1} \sin \phi+v_{2} \cos \phi
$$

\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Are rotations commutative?

Notes

Let a be a vector in \mathbb{R}^{2}
(1) Rotate the vector a by θ radians, then by ϕ radians.
(2) Rotate the vector a by ϕ radians, then by θ radians.

Will you always end up with the same thing?

Course Notes 4.1: Matrix Operations
Are rotations commutative?

Will

$$
\operatorname{Rot}_{\phi}\left(\operatorname{Rot}_{\theta} \mathbf{a}\right)=\operatorname{Rot}_{\theta}\left(\operatorname{Rot}_{\phi} \mathbf{a}\right)
$$

for every θ, every ϕ, and every a in \mathbb{R}^{2} ?
In general, matrix multiplication is not commutative, but we don't
care about ALL matrices-only rotation matrices

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

