: Operations Course Notes 00000000	4.2: Linear Transformations 00000000	
		Notes
Natrix Multiplication and Linear Transformati	on -	
tes: 4.1,4.2		
rn the mechanics of matrix multiplication an tion, and use matrix multiplication to describ tions.		
tions.		

Course Notes 4.1: Matrix Operations •0000000000 Matrix Anatomy Course Notes 4.2: Linear Transformation

Course Notes 4.2: Linear Transformations

	[1	2	3	4]	
A =	2	4	6	8	
	3	6	9	4 8 12	
	Γ1	2	3	4]	
A =	[1 2	2 4	3 6	4 8 12	

A matrix with 3 rows and 4 columns is a 3 by 4 matrix.

We often write $A = [a_{i,j}]$, where $a_{i,j}$ refers to the particular entry of A in row *i*, column *j*.

Course Notes 4.1: Matrix Operations

Addition and Scalar Multiplication

Addition and scalar multiplication work the way you want them to.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 1 & 5 & -1 \\ 8 & 6 & 6 & 2 \\ 3 & -1 & 2 & -3 \end{bmatrix}$$

Notes

Course Notes 4.2: Linear Transformatio

Mobile money minimization: matrix multiplication motivation Notes

You're comparing cell phone plans. For some number of plans and for some number of people, you have information about costs and usage of three servies: texts, minutes talking, and GB of data.

You want to know, for each person and plan, what the cost will be.

Input: plans×services and people×services Output: plans×people

Course Notes 4.1: Matrix Operations

Course Notes 4.2: Linear Transform

Matrix Multiplication

Notes

 $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 11 \\ 10 & 22 \end{bmatrix}$

In the product, the entry in the ith row and jth column comes from dotting the ith row and jth column of the matrices being multiplied.

$$\begin{split} & [1,2,3] \cdot [1,2,0] = 5 \\ & [1,2,3] \cdot [0,1,3] = 11 \\ & [2,4,6] \cdot [1,2,0] = 10 \\ & [2,4,6] \cdot [0,1,3] = 22 \end{split}$$

Course Notes 4.1: Matrix Operations 00000000000	
Another Example	

Course Notes 4.2: Linear Transfor

 $\begin{bmatrix} 0 & 1 & 3 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & 0 \\ 1 & 2 \end{bmatrix} =$

Course Notes 4.2: Linear Transformations

Notes

$$\begin{bmatrix} 2 & 5 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} =$$

Course A1: Matrix Operations
Coordecococo
Nait but... why

$$\begin{bmatrix} 1x_1 + 2x_2 + 3x_3 + 4x_4 \\ 5x_1 + 6x_2 + 7x_3 + 8x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

Notes			

Course Notes 4.1: Matrix Opera 000000000000
Dimensions

tions

Course Notes 4.2: Linear Trans

We can only take the dot product of two vectors that have the same length.

If A is an *m*-by-*n* matrix, and B is an *r*-by-*c* matrix, then AB is only defined if n = r. If n = r, then AB is an *m*-by-*c* matrix.

Can you always multiply a matrix by itself?

Properties of Matrix Multiplication

One important property DOESN'T hold.

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 7 & 5 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 5 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} =$$

Notes

Notes

Notes

Course Notes 4.1: Matrix Operations

Course Notes 4.2: Linear Transformations

Course Notes 4.2: Linear Transformati

Course Notes 4.2: Linear Transformations

Properties of Matrix Algebra

The other properties hold as you would like. (Page 128, notes.)

- 1. A + B = B + A
- 2. A + (B + C) = (A + B) + C
- 3. s(A+B) = sA + sB
- 4. (s+t)A = sA + tA
- 5. (st)A = s(tA)
- 6. 1A = A
- 7. $A + \mathbf{0} = A$ (where **0** is the matrix of all zeros)
- 8. A A = A + (-1)A = 0
- 9. A(B+C) = AB + AC
- 10. (A + B)C = AC + BC
- 11. A(BC) = (AB)C
- 12. s(AB) = (sA)B = A(sB)

Course Notes 4.1: Matrix Operations 00000000000 Examples

Simplify the following expressions.

$$1) \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 8 & 9 & 8 \\ 9 & 8 & 9 \\ 8 & 9 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} -8 & -9 & -8 \\ -9 & -8 & -9 \\ -8 & -9 & -8 \end{bmatrix}$$
$$2) \left(\begin{bmatrix} 33 & 44 \\ 55 & 66 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 7 & 0 \end{bmatrix} \right) \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$
$$3) 2.8 \begin{bmatrix} 15 & 0 & 38 \\ 9 & 10 & 11 \\ 8 & 7 & 6 \end{bmatrix} + 5.6 \begin{bmatrix} -2.5 & 0 & 1 \\ 0.5 & 0 & -0.5 \\ 1 & 1.5 & 2 \end{bmatrix}$$

More on Dimensions

Course Notes 4.2: Linear Transformations

Notes

Notes

Suppose A is an *m*-by-n matrix, and B is an *r*-by-c matrix.

If we want to multiply A and B, what has to be true about m, n, r, and c?

If we want to add A and B, what has to be true about m, n, r, and c?

If we want to compute (A + B)A, what has to be true about *m*, *n*, *r*, and *c*?

Course Notes 4.1: Matrix Operations 00000000000	Course Notes 4.2: Linear Transformations 00000000000000000		
Linear Transformations			
f(2+3) = 25 f(2*3) = 36	$f(x) = x^{2}$ f(2) + f(3) = 4 + 9 = 13 2f(3) = 2 \cdot 9 = 18		
	g(x) = 5x		
g(2+3) = 25 g(2*3) = 30	g(2) + g(3) = 10 + 15 = 25 $2g(3) = 2 \cdot 15 = 30$		
g(x + y) = 5(x + y) = 5x + 5y = g(x) + g(y) g(xy) = 5(xy) = x(5y) = xg(y)			

Notes 4.1: Matrix Operation

Course Notes 4.2: Linear Transformations

Course Notes 4.2: Linear Transformations

Linear Transformations

Definition

A transformation T is called **linear** if, for any \mathbf{x}, \mathbf{y} in the domain of T, and any scalar s,

$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$$

and

$$T(s\mathbf{x}) = sT(\mathbf{x}).$$

Is differentiation $T(f(x)) = \frac{d}{dx}[f(x)]$ (of functions whose derivatives exist everywhere) a linear transformation?

Let
$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}x+y\\2x\end{bmatrix}$$
. Is T a linear transformation

Linear Transformations	
Definition	

A transformation T is called **linear** if, for any **x**, **y** in the domain of T, and any scalar s, $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ and $T(s\mathbf{x}) = sT(\mathbf{x})$.

Are the following linear transformations?

$$S\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}z\\y\\x\end{bmatrix} \cdot \begin{bmatrix}1\\2\\3\end{bmatrix}$$
$$T(\mathbf{x}) = \|\mathbf{x}\|, \mathbf{x} \text{ in } \mathbb{R}^2$$
$$R\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}x\\-1\\y\end{bmatrix} \times \begin{bmatrix}1\\2\\3\end{bmatrix}$$

Course Notes 4.1: Matrix Operations

Course Notes 4.2: Linear Transformations

linear?

Linear Transformations

Definition

A transformation T is called **linear** if, for any **x**, **y** in the domain of T, and any scalar *s*,

$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$$

 $T(s\mathbf{x}) = sT(\mathbf{x}).$

and

Is the transformation
$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

If A is a matrix, then the transformation

$$T(\mathbf{x}) = A\mathbf{x}$$

of a vector ${\boldsymbol x}$ is linear.

Notes

Course Notes 4.2: Linear Transformations

Linear Transformations

Geometric Interpretation

We interpret a matrix geometrically as a **function** from some vectors to some other vectors. In particular, the function is a **linear transformation**, so it preserves addition and scalar multiplication.

If $T(\mathbf{x}) = A\mathbf{x}$ for some 3×5 matrix A (and a vector \mathbf{x}), what are the domain and range of the function T?

Rotation by a fixed angle is a linear transformation.

Notes

Notes

Irse Notes 4.1: Matrix Operations Course Notes 4.2: Linear Transformations 0000000000 0000000000000000000000000
omputing Rotations
$\operatorname{Rot}_{\phi} = egin{bmatrix} \cos \phi & -\sin \phi \ \sin \phi & \cos \phi \end{bmatrix}$
What matrix should you multiply $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ by to rotate it 90 degrees $(\pi/2 \text{ radians})$?
What matrix should you multiply $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ by to rotate it 30 degrees

Course Notes 4.1: Matrix Operations 00000000000	Course Notes 4.2: Linear Transformations
Are rotations commutative?	

Let **a** be a vector in \mathbb{R}^2 .

(1) Rotate the vector **a** by θ radians, then by ϕ radians.

(2) Rotate the vector ${\bf a}$ by ϕ radians, then by θ radians.

Will you always end up with the same thing?

Course Notes 4.1: Matrix Operations 00000000000	Course Notes 4.2: Linear Transformations	
Are rotations commutative?		Notes
Let a be a vector in \mathbb{R}^2 . (1) Rotate the vector a by θ radians, the vector b by the vector b by the vector b because th	hen by ϕ radians.	
(2) Rotate the vector a by ϕ radians, t	hen by θ radians.	
Will you always end up with the same the	hing?	

Course Notes 4.2: Linear Transformations

Are rotations commutative?

Will

$\operatorname{Rot}_{\phi}(\operatorname{Rot}_{\theta}\mathbf{a}) = \operatorname{Rot}_{\theta}(\operatorname{Rot}_{\phi}\mathbf{a})$

for every θ , every ϕ , and every **a** in \mathbb{R}^2 ? In general, matrix multiplication is not commutative, but we don't care about ALL matrices–only rotation matrices.

Notes